首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   25篇
  国内免费   7篇
测绘学   5篇
大气科学   3篇
地球物理   26篇
地质学   114篇
海洋学   11篇
天文学   1篇
综合类   1篇
自然地理   12篇
  2022年   1篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   5篇
  2017年   7篇
  2016年   5篇
  2015年   9篇
  2014年   9篇
  2013年   12篇
  2012年   7篇
  2011年   5篇
  2010年   14篇
  2009年   9篇
  2008年   9篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1998年   6篇
  1997年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
101.
龙岗古陆南缘光华岩群地质特征及时代探讨   总被引:5,自引:4,他引:1  
吉林省通化市北部光华乡一带,发育有一套由变质基性席状岩墙、变质气孔状玄武岩、黑云变粒岩、大理岩、含榴二云片岩、变质流纹岩为组合的中-浅变质岩系.该套岩系岩石组合、变质程度均有别于龙岗古陆内的太古宙上壳岩.具有陆内裂谷环境下形成的双峰式火山岩建造特征.依据区域地层对比、岩石组合特征、同位素年龄资料,与周围侵入岩的相互关系,结合本地区地壳演化历史综合分析认为,其形成时代当属早元古宙,建立光华岩群.  相似文献   
102.
The development of glacier karst at the margins of melting ice sheets produces complex glaciofluvial sediment-landform assemblages that provide information on ice sheet downwasting processes. We present the first combined geomorphological, sedimentological and geophysical investigation of the Brampton Kame Belt, an important glaciofluvial depositional zone at the centre of the last British-Irish Ice Sheet. Ground-penetrating radar (GPR) data allow the broad scale internal architecture of ridges (eskers) and flat-topped hills (ice-walled lake plains) to be determined at four sites. In combination with sediment exposures, these provide information on lateral and vertical variations in accretion styles, depositional boundaries, and grain size changes. Building on existing work on the subject, we propose a refined model for the formation of ice-walled lake plains resulting from the evolution and collapse of major drainage axes into lakes as stable glacier karst develops during deglaciation. The internal structure of esker ridges demonstrates variations in sedimentation that can be linked to differences in ridge morphologies across the kame belt. This includes low energy flow conditions and multiple accretion phases identified within large S-N oriented esker ridges; and fluctuating water pressures, hyperconcentrated flows, and significant deformation within a fragmented SW–NE oriented esker ridge. In combination with updated geomorphological mapping, this work allows us to identify two main styles of drainage within the kame belt: (1) major drainage axes aligned broadly S-N that extend through the entire kame belt and collapsed into a chain of ice-walled lakes; and (2) a series of smaller, fragmented SW–NE aligned esker ridges that represent ice-marginal drainage as the ice sheet receded south-eastwards up the Vale of Eden. Our study demonstrates the importance of integrated geomorphological, sedimentological and geophysical investigations in order to understand complex and polyphase glaciofluvial sediment-landform assemblages. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   
103.
104.
High-resolution seismic and bathymetric data offshore southeast Ireland and LIDaR data in County Waterford are presented that partially overlap previous studies. The observed Quaternary stratigraphic succession offshore southeast Ireland (between Dungarvan and Kilmore Quay) records a sequence of depositional and erosional events that supports regional glacial models derived from nearby coastal sediment stratigraphies and landforms. A regionally widespread, acoustically massive facies interpreted as the ‘Irish Sea Till’ infills an uneven, channelized bedrock surface overlying irregular mounds and deposits in bedrock lows that are probably earlier Pleistocene diamicts. The till is truncated and overlain by a thin, stratified facies, suggesting the development of a regional palaeolake following ice recession of the Irish Sea Ice Stream. A north–south oriented seabed ridge to the north is interpreted as an esker, representing southward flowing subglacial drainage associated with a restricted ice sheet advance of the Irish Ice Sheet onto the Celtic Sea shelf. Onshore topographic data reveal streamlined bedforms that corroborate a southerly advance of ice onto the shelf across County Waterford. The combined evidence supports previous palaeoglaciological models. Significantly, for the first time, this study defines a southern limit for a Late Midlandian Irish Ice Sheet advance onto the Celtic Sea shelf. © 2020 John Wiley & Sons, Ltd.  相似文献   
105.
106.
Core HU97048‐007PC was recovered from the continental Labrador Sea slope at a water depth of 945 m, 250 km seaward from the mouth of Cumberland Sound, and 400 km north of Hudson Strait. Cumberland Sound is a structural trough partly floored by Cretaceous mudstones and Paleozoic carbonates. The record extends from ~10 to 58 ka. On‐board logging revealed a complex series of lithofacies, including buff‐colored detrital carbonate‐rich sediments [Heinrich (H)‐events] frequently bracketed by black facies. We investigate the provenance of these facies using quantitative X‐ray diffraction on drill‐core samples from Paleozoic and Cretaceous bedrock from the SE Baffin Island Shelf, and on the < 2‐mm sediment fraction in a transect of five cores from Cumberland Sound to the NW Labrador Sea. A sediment unmixing program was used to discriminate between sediment sources, which included dolomite‐rich sediments from Baffin Bay, calcite‐rich sediments from Hudson Strait and discrete sources from Cumberland Sound. Results indicated that the bulk of the sediment was derived from Cumberland Sound, but Baffin Bay contributed to sediments coeval with H‐0 (Younger Dryas), whereas Hudson Strait was the source during H‐events 1–4. Contributions from the Cretaceous outcrops within Cumberland Sound bracket H‐events, thus both leading and lagging Hudson Strait‐sourced H‐events. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
107.
The complex cyclical nature of Pleistocene climate, driven by the evolving orbital configuration of the Earth, is well known but not well understood. A major climatic transition took place at the Mid‐Brunhes Event (MBE), ca. 430 ka ago after which the amplitude of the ca.100 ka climate oscillations increased, with substantially warmer interglacials, including periods warmer than present. Recent modelling has indicated that while the timing of these warmer‐than‐present transient (WPT) events is consistent with southern warming due to a deglaciation‐forced slowdown of the Atlantic Meridional Overturning Circulation, the magnitude of warming requires a local amplification, for which a candidate is the feedback of significant West Antarctic Ice Sheet (WAIS) retreat. We here extend this argument, based on the absence of WPTs in the early ice core record (450–800 ka ago), to hypothesize that the MBE could be a manifestation of decreased WAIS stability, triggered by ongoing subglacial erosion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
108.
109.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号